Title | A geometric distance to the galaxy NGC4258 from orbital motions in a nuclear gas disk |
Authors | Herrnstein, J. R.; Moran, J. M.; Greenhill, L. J.; Diamond, P. J.; Inoue, M.; Nakai, N.; Miyoshi, M.; Henkel, C.; Riess, A. |
Bibcode | 1999Natur.400..539H Search ADS ↗ |
Abstract | The accurate measurement of extragalactic distances is a central challenge of modern astronomy, being required for any realistic description of the age, geometry and fate of the Universe. The measurement of relative extragalactic distances has become fairly routine, but estimates of absolute distances are rare. In the vicinity of the Sun, direct geometric techniques for obtaining absolute distances, such as orbital parallax, are feasible, but such techniques have hitherto been difficult to apply to other galaxies. As a result, uncertainties in the expansion rate and age of the Universe are dominated by uncertainties in the absolute calibration of the extragalactic distance ladder. Here we report a geometric distance to the galaxy NGC4258, which we infer from the direct measurement of orbital motions in a disk of gas surrounding the nucleus of this galaxy. The distance so determined-7.2 +/- 0.3Mpc-is the most precise absolute extragalactic distance yet measured, and is likely to play an important role in future distance-scale calibrations. |
Objects | 1 Objects Search NED ↙ |